3.389 \(\int \frac{x^2}{\sqrt{d+e x^2} (a+b x^2+c x^4)} \, dx\)

Optimal. Leaf size=240 \[ \frac{\sqrt{\sqrt{b^2-4 a c}+b} \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}{\sqrt{\sqrt{b^2-4 a c}+b} \sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}-\frac{\sqrt{b-\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}} \]

[Out]

-((Sqrt[b - Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b - Sqrt[b^2 - 4*a*c]]
*Sqrt[d + e*x^2])])/(Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e])) + (Sqrt[b + Sqrt[b^2 - 4*a*c]
]*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(Sqrt[b^2
 - 4*a*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

________________________________________________________________________________________

Rubi [A]  time = 0.304258, antiderivative size = 240, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 3, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.103, Rules used = {1303, 377, 205} \[ \frac{\sqrt{\sqrt{b^2-4 a c}+b} \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}{\sqrt{\sqrt{b^2-4 a c}+b} \sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}-\frac{\sqrt{b-\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(Sqrt[d + e*x^2]*(a + b*x^2 + c*x^4)),x]

[Out]

-((Sqrt[b - Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b - Sqrt[b^2 - 4*a*c]]
*Sqrt[d + e*x^2])])/(Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e])) + (Sqrt[b + Sqrt[b^2 - 4*a*c]
]*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(Sqrt[b^2
 - 4*a*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

Rule 1303

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Exp
andIntegrand[(d + e*x^2)^q, (f*x)^m/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[b^2
- 4*a*c, 0] &&  !IntegerQ[q] && IntegerQ[m]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^2}{\sqrt{d+e x^2} \left (a+b x^2+c x^4\right )} \, dx &=\int \left (\frac{1-\frac{b}{\sqrt{b^2-4 a c}}}{\left (b-\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}}+\frac{1+\frac{b}{\sqrt{b^2-4 a c}}}{\left (b+\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}}\right ) \, dx\\ &=\left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\left (b-\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}} \, dx+\left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\left (b+\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}} \, dx\\ &=\left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{b-\sqrt{b^2-4 a c}-\left (-2 c d+\left (b-\sqrt{b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac{x}{\sqrt{d+e x^2}}\right )+\left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{b+\sqrt{b^2-4 a c}-\left (-2 c d+\left (b+\sqrt{b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac{x}{\sqrt{d+e x^2}}\right )\\ &=-\frac{\sqrt{b-\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{\sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e} x}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e}}+\frac{\sqrt{b+\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{\sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e} x}{\sqrt{b+\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}}\\ \end{align*}

Mathematica [A]  time = 0.473695, size = 227, normalized size = 0.95 \[ \frac{\frac{\sqrt{\sqrt{b^2-4 a c}+b} \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}{\sqrt{\sqrt{b^2-4 a c}+b} \sqrt{d+e x^2}}\right )}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}-\frac{\sqrt{b-\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{x \sqrt{e \sqrt{b^2-4 a c}-b e+2 c d}}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{\sqrt{e \left (\sqrt{b^2-4 a c}-b\right )+2 c d}}}{\sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(Sqrt[d + e*x^2]*(a + b*x^2 + c*x^4)),x]

[Out]

(-((Sqrt[b - Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e]*x)/(Sqrt[b - Sqrt[b^2 - 4*a*c]
]*Sqrt[d + e*x^2])])/Sqrt[2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e]) + (Sqrt[b + Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2*c
*d - (b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/Sqrt[2*c*d - (b + Sqrt[b^2
- 4*a*c])*e])/Sqrt[b^2 - 4*a*c]

________________________________________________________________________________________

Maple [C]  time = 0.017, size = 161, normalized size = 0.7 \begin{align*} -{\frac{1}{2}\sqrt{e}\sum _{{\it \_R}={\it RootOf} \left ( c{{\it \_Z}}^{4}+ \left ( 4\,be-4\,cd \right ){{\it \_Z}}^{3}+ \left ( 16\,a{e}^{2}-8\,deb+6\,c{d}^{2} \right ){{\it \_Z}}^{2}+ \left ( 4\,b{d}^{2}e-4\,c{d}^{3} \right ){\it \_Z}+c{d}^{4} \right ) }{\frac{{{\it \_R}}^{2}-2\,{\it \_R}\,d+{d}^{2}}{{{\it \_R}}^{3}c+3\,{{\it \_R}}^{2}be-3\,{{\it \_R}}^{2}cd+8\,{\it \_R}\,a{e}^{2}-4\,{\it \_R}\,bde+3\,{\it \_R}\,c{d}^{2}+b{d}^{2}e-c{d}^{3}}\ln \left ( \left ( \sqrt{e{x}^{2}+d}-\sqrt{e}x \right ) ^{2}-{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(c*x^4+b*x^2+a)/(e*x^2+d)^(1/2),x)

[Out]

-1/2*e^(1/2)*sum((_R^2-2*_R*d+d^2)/(_R^3*c+3*_R^2*b*e-3*_R^2*c*d+8*_R*a*e^2-4*_R*b*d*e+3*_R*c*d^2+b*d^2*e-c*d^
3)*ln(((e*x^2+d)^(1/2)-e^(1/2)*x)^2-_R),_R=RootOf(c*_Z^4+(4*b*e-4*c*d)*_Z^3+(16*a*e^2-8*b*d*e+6*c*d^2)*_Z^2+(4
*b*d^2*e-4*c*d^3)*_Z+c*d^4))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{{\left (c x^{4} + b x^{2} + a\right )} \sqrt{e x^{2} + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^4+b*x^2+a)/(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/((c*x^4 + b*x^2 + a)*sqrt(e*x^2 + d)), x)

________________________________________________________________________________________

Fricas [B]  time = 31.4936, size = 6973, normalized size = 29.05 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^4+b*x^2+a)/(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

1/4*sqrt(1/2)*sqrt(-(b*d - 2*a*e + ((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2)*sqrt(
d^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3
- 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)))/((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*
c)*e^2))*log((((b^2*c - 4*a*c^2)*d^3 - (b^3 - 4*a*b*c)*d^2*e + (a*b^2 - 4*a^2*c)*d*e^2)*sqrt(d^2/((b^2*c^2 - 4
*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^
3 + (a^2*b^2 - 4*a^3*c)*e^4))*x^2 + 2*a*d^2 - (b*d^2 - 4*a*d*e)*x^2 + 2*sqrt(1/2)*((b^2 - 4*a*c)*d^2*x - ((b^3
*c - 4*a*b*c^2)*d^3 - (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e + 3*(a*b^3 - 4*a^2*b*c)*d*e^2 - 2*(a^2*b^2 - 4*a^3*c
)*e^3)*sqrt(d^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2
 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4))*x)*sqrt(e*x^2 + d)*sqrt(-(b*d - 2*a*e + ((b^2*c - 4
*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2)*sqrt(d^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*
b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4))
)/((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2)))/x^2) - 1/4*sqrt(1/2)*sqrt(-(b*d - 2*
a*e + ((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2)*sqrt(d^2/((b^2*c^2 - 4*a*c^3)*d^4
- 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2
 - 4*a^3*c)*e^4)))/((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2))*log((((b^2*c - 4*a*c
^2)*d^3 - (b^3 - 4*a*b*c)*d^2*e + (a*b^2 - 4*a^2*c)*d*e^2)*sqrt(d^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*
b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4))
*x^2 + 2*a*d^2 - (b*d^2 - 4*a*d*e)*x^2 - 2*sqrt(1/2)*((b^2 - 4*a*c)*d^2*x - ((b^3*c - 4*a*b*c^2)*d^3 - (b^4 -
2*a*b^2*c - 8*a^2*c^2)*d^2*e + 3*(a*b^3 - 4*a^2*b*c)*d*e^2 - 2*(a^2*b^2 - 4*a^3*c)*e^3)*sqrt(d^2/((b^2*c^2 - 4
*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^
3 + (a^2*b^2 - 4*a^3*c)*e^4))*x)*sqrt(e*x^2 + d)*sqrt(-(b*d - 2*a*e + ((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)
*d*e + (a*b^2 - 4*a^2*c)*e^2)*sqrt(d^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2
*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)))/((b^2*c - 4*a*c^2)*d^2 - (b
^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2)))/x^2) - 1/4*sqrt(1/2)*sqrt(-(b*d - 2*a*e - ((b^2*c - 4*a*c^2)*d^2
- (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2)*sqrt(d^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e
 + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)))/((b^2*c -
4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2))*log(-(((b^2*c - 4*a*c^2)*d^3 - (b^3 - 4*a*b*c)*d^
2*e + (a*b^2 - 4*a^2*c)*d*e^2)*sqrt(d^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^
2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4))*x^2 - 2*a*d^2 + (b*d^2 - 4*
a*d*e)*x^2 + 2*sqrt(1/2)*((b^2 - 4*a*c)*d^2*x + ((b^3*c - 4*a*b*c^2)*d^3 - (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e
 + 3*(a*b^3 - 4*a^2*b*c)*d*e^2 - 2*(a^2*b^2 - 4*a^3*c)*e^3)*sqrt(d^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a
*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)
)*x)*sqrt(e*x^2 + d)*sqrt(-(b*d - 2*a*e - ((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2
)*sqrt(d^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*
(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)))/((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 -
 4*a^2*c)*e^2)))/x^2) + 1/4*sqrt(1/2)*sqrt(-(b*d - 2*a*e - ((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b
^2 - 4*a^2*c)*e^2)*sqrt(d^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*
c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)))/((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*
c)*d*e + (a*b^2 - 4*a^2*c)*e^2))*log(-(((b^2*c - 4*a*c^2)*d^3 - (b^3 - 4*a*b*c)*d^2*e + (a*b^2 - 4*a^2*c)*d*e^
2)*sqrt(d^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2
*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4))*x^2 - 2*a*d^2 + (b*d^2 - 4*a*d*e)*x^2 - 2*sqrt(1/2)*((b
^2 - 4*a*c)*d^2*x + ((b^3*c - 4*a*b*c^2)*d^3 - (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e + 3*(a*b^3 - 4*a^2*b*c)*d*e
^2 - 2*(a^2*b^2 - 4*a^3*c)*e^3)*sqrt(d^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b
^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4))*x)*sqrt(e*x^2 + d)*sqrt(-(
b*d - 2*a*e - ((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2)*sqrt(d^2/((b^2*c^2 - 4*a*c
^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 +
(a^2*b^2 - 4*a^3*c)*e^4)))/((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2)))/x^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{d + e x^{2}} \left (a + b x^{2} + c x^{4}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(c*x**4+b*x**2+a)/(e*x**2+d)**(1/2),x)

[Out]

Integral(x**2/(sqrt(d + e*x**2)*(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^4+b*x^2+a)/(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError